... distinguished ... in astronomy, arithmetic, music and all educational subjects.A member of the society of Pythagoras, Theodorus was one of the main philosophers in the Cyrenaic school of moral philosophy. He believed that pleasures and pains are neither good nor bad. Cheerfulness and wisdom, he believed, were sufficient for happiness.
[Theodorus] was proving to us a certain thing about square roots, I mean the side (i.e. root) of a square of three square units and of five square units, that these roots are not commensurable in length with the unit length, and he went on in this way, taking all the separate cases up to the root of seventeen square units, at which point, for some reason, he stopped.Our whole knowledge of Theodorus's mathematical achievements are given by this passage from Plato. Yet there are points of interest which immediately arise. The first point is that Plato does not credit Theodorus with a proof that the square root of two was irrational. This must be because √2 was proved irrational before Theodorus worked on the problem, some claim this was proved by Pythagoras himself.
The idea occurred to the two of us (Theaetetus and Socrates), seeing that these square roots appeared to be unlimited in multitude, to try to arrive at one collective term by which we could designate all these roots....So the question which naturally comes next is how did Theodorus prove that √3, √5, ..., √17 were irrational without giving a proof which would clearly prove that any non-square number was irrational. The usual proof that √2 is irrational, namely the one which supposes that √2=qp where qp is a rational in its lowest terms and derives a contradiction by showing that p and q are both even, would have been known to Theodorus. This proof generalises easily (for a modern mathematicians thinking in terms of numbers rather than lengths) to show √n is irrational for any non-square n. It is almost impossible to conceive that Theodorus would have used this proof on each of √3, √5, ..., √17 without obtaining a general theorem long before he got to 17.
If, when the lesser of two unequal magnitudes is continually subtracted in turn from the greater, that which is left never measures the one before it, the magnitudes will be incommensurable.Heath[5] illustrates the use of this result to show that √5 is irrational. Start with 1 and √5.
1√5=2+(√5−2)
√5−21=4+(√5−2)2
(√5−2)2√5−2=√5−21=4+(√5−2)2
.......
Written by J J O'Connor and E F Robertson
Last Update January 1999